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In  arc welding electromagnetic forces are thought to be the major cause of motion 
in the weldpool, and it has recently been found by experimentalists that the applica- 
tion to the workpiece of a uniform magnetic field normal to the weldpool surface 
appears to stabilize the welding process. In  this paper we investigate motion in a 
hemisphere due to a stationary distributed current bource yith a superimposed 
uniform magnetic field applied parallel to the axis of symmetry. When inertial effects 
are ignored and a simple source-sink model of the current source is introduced, we 
obtain an analytic solution for the fluid flow valid for low currents and low applied 
fields. A numerical scheme is then developed to solve the full nonlinear-flow problem 
and results are obtained for the source-sink model of the current source and for a 
more realistic numerically constructed distributed current source. For values of the 
externally applied magnetic field and the current flowing through the hemisphere 
typical of those occurring in practical welding situations we discover that the flow 
in an axial section through the pool is radially outwards on the free surface. This is 
in the opposite direction to that generally predicted by the theory when there is no 
superimposed magnetic field. 

1. Introduction 
Fusion welding is important in many industrial processes and in order to achieve 

consistently satisfactory welds much effort is being expended in attempts to ascertain 
the important mechanisms determining the shape of the weldpool. 

The experiments of Woods & Milner (1971), Kublanov & Erokhin (1974) and 
Butsenieks et al. (1975, 1976) have shown the existence of vigorous motion in the 
weldpool, and it seems likely that this motion significantly influences the position of 
the solid-liquid boundary and hence the shape of the weldpool. These experiments 
also suggest that the mot,ion is mainly caused by the electromagnetic j x B force, j 
being the current density induced in the material by the welding arc and B the 
corresponding magnetic induction. 

In  attempts to find the fluid flow in the weldpool theoreticians have modelled the 
current source in a number of ways. In most of the early work the welding arc was 
represented by a stationary point source of current on the surface of the material, 
but this model leads to the appearance of singularities in the velocity distribution. 
For further discussion of the point source representation the reader should consult 
Moffatt (1978) and Andrews & Craine (1978). 

0022-1 120/80/4456-8810 $02.00 @ 1980 Cambridge University Press 
I 



2 R. E.  Craine am' N .  P. Weatherill 

In  practice the current enters the material not at a point but over an area of the 
surface, and methods of modelling these distributed current sources have been put 
forward by a number of authors. Sozou (1972) considered the far-field solution in a 
semi-infinite fluid due to a disk source of current. Later Andrews & Craine (1976, 
1978) proposed a current distribution arising from the combination of a point source 
and a ring sink and this gave a smooth velocity field in a hemispherical pool. The 
source-sink current distribution is fairly uniform over the surface of the pool, however, 
and one which more accurately models the concentrated current sources which occur 
in arc welding has recently been constructed numerically by Atthey (1978). Under 
normal welding conditions the linear solution of Andrews & Craine is restricted to 
small currents (only 1 or 2A through the pool) whereas Atthey, also working with a 
hemispherical pool, solved the nonlinear flow problem numerically, using both the 
source-sink and numerically constructed current distributions, for currents through 
the pool of up to 1OOA. A disk source of current of radius k on the surface of an oblate 
hemispheroidal pool of equatorial radius a (where a > k) has been considered in a 
recent paper by Sozou & Pickering (1978). They obtained an analytic solution when 
the inertial terms in the governing Navier-Stokes equations are neglected, the 
assumption previously made in Andrewe & Craine (1976, 1978). Sozou & Pickering 
display solutions for various values of a/k,  but under typical welding conditions their 
solutions are valid only for low currents. 

Although the theoretical work outlined above has helped in the understanding of 
the complex mechanisms involved in arc welding, a problem which concerns experi- 
mentalists is the non-repeatability of results from experiments conducted under 
apparently identical conditions. Recently it has been found that the superposition of 
a uniform magnetic field over the weldpool and normal to the free surface produces 
more consistent results (Selyanenkov et al. 1975; Willgoss 1978). Any technique 
which stabilizes the welding process is potentially of great importance and research 
is now in progress to assess the practical implications of these observations. 

In  this paper we will consider in detail the fluid motion produced in a stationary 
hemispherical weldpool when a distributed source of current is applied to the plane 
face of the hemisphere, the free surface of the pool, and a uniform magnetic field, 
normal to the free surface, is superimposed over the pool. The basic equations are 
displayed in $ 2 and two methods of representing a distributed current source are 
given in 0 3. Neglecting the inertial terms in the Navier-Stokes equations and using 
the Andrews & Craine source-sink distribution of current we obtain in 0 4 an analytic 
solution to the linear fluid flow problem which, under typical welding conditions, is 
valid for low applied currents ( < 15A). Although this analytic solution has limited 
validity it provides information on the qualitative features of the flow patterns and it 
proves a useful check on the accuracy of the numerical scheme developed in 0 5. The 
stream-function-vorticity numerical method is used and a summary of the num- 
erical results obtained is given in the following section. The results are discussed in $7. 

2. Basic equations 
An electrically conducting incompressible fluid of density p and kinematic viscosity 

v fills a hemispherical container of radius r,,. Spherical polar co-ordinates (r,  8,$) are 
employed, the origin r = 0 being the centre of the plane face, which is a free surface, 
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and the axis B = 0 being the axis of symmetry into the fluid hemisphere. The current 
density j which is induced in the fluid by the applied current source gives rise to the 
magnetic induction B, determined by Maxwell’s equat.ion 

V x B  =,uoj, (1) 

where ,uo is the permeability (m.k.s. units). Back E.M.F. effects are ignored (for 
further discussion see $ 7). 

If p and v denote the static pressure and velocity of the fluid respectively and we 
introduce the vorticityo = V x v, then the basic fluid flow equations to be solved are 
the momentum equation 

and the continuity of mass equation V . v = 0. 
In  this paper the resultant magnetic induction B is the sum of B,, a term arising 

directly from the current density induced by the applied source, and B,, the externally 
applied uniform magnetic field. We assume B, is parallel to 0 = 0 and acts into the 
hemisphere and therefore, with respect to the spherical polar co-ordinate system, it 
is given by 

(3) 

where ,u = cosB. It is clear from equation (1) and the uniformity of B, that the 
resultant value of j arises solely from the applied current source, which we assume 
is axisymmetric. It is convenient to introduce a (Stokes) stream function $ and write 

B, = Bob, - (1 -P% O), 

where both @ and w are independent of +. The continuity of mass equation is then 
identically satisfied. 

The boundary conditions for the problem under discussion are 

a$ 
ar $ = - = w = O  on r = r o ,  

+ = O  on p = l ,  (7) 

v is finite throughout the hemisphere (particularly on ,a = 1 and as r + 0). ( 8 )  

The conditions on @ are identical to those introduced in Andrews & Craine (1978) 
whilst equations (5c) and (6c) ensure that the shear stress and azimuthal velocity are 
zero on the free surface and solid-liquid interface respectively. The validity of 
assuming that the free surface is flat will be discussed in $ 7 .  

3. Current distributions 
Two distinct forms for the current density j will be used in later sections. Firstly 

following Andrews & Craine (1978) j is constructed from a point source a distance a 
above the free surface ,u = 0 and a point sink a distance b below this surface, with the 

1-2 
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source and sink lying on the axis of symmetry and the total discharge of current being 
I .  For this source-sink model the current density j has the form (j?, j,, 0)  whilst the 
corresponding induced field B, is given by B, = (0, 0, B#). Series representations for 
j,,j, and B+, when ro < a and ro < b, may be found in Andrews & Craine 1978, equations 
(7) and (8). 

Although the above current distribution enables an analytic solution to be found 
there is little variation in the normal component of j, j,, on the free surface ,u = 0 of 
the pool and when a = b = 2r0 around 90% of the total current I misses the pool. 
The obvious way of circumventing this problem by choosing a < ro leads to analytic 
difficulties and therefore in order to represent a realistic current source Atthey (1978) 
has constructed a numerical distribution by considering the current flowing in a 
plate of finite thickness g. Employing cylindrical co-ordinates (1, z )  Atthey solves 
Laplace’s equation for the electrostatic potential V subject to the boundary conditions, 

- O o n z = g ,  -=Oonl=O,  V = O o n l = L , .  (9) - - 

Conditions (9a)  and (9b) imply that a normal flow of currentj,(l) is prescribed on z = 0, 
the top surface of the plate, whereas there is no current flow across z = g, the bottom 
surface. Equation (9c) follows from symmetry whereas (9d) represents the assumption 
that at some radius Lo (typically 39) the current flow has no z component. In  later 
work we use, following Atthey (1978), the current distribution determined by 

av 
az 

av av 
82 az 
- =jo ( l )  on z = 0, 

where we assume ro = 2 x 10-3m, 1 = 0.4r0 and g = 2r0. Since 1, < ro < g most of the 
current I flows through the hemispherical pool and this pool lies within the plate. 
The numerical current distribution introduced here is much more concentrated near 
the origin than the source-sink one and consequently it leads to greater currents in 
directions perpendicular to 0 = 0 than the corresponding source-sink models. Having 
determined V using (9) and (10) the current density follows directly from Ohm’s law 
which, in the absence of back E.M.F.’s, is 

j = - c V V ,  (11) 

where c i s  the electrical conductivity. The magnetic induction is then calculated using 
equation (1) .  

4. A linearized solution 
4.1. Analysis 

The system comprising the fluid-flow equation (2) and the boundary conditions ( 5 )  
to (8) is extremely complex and, in general, only numerical solutions are possible. 
However, we show below that an analytic solution can be found when the source- 
sink current distribution is used and the left-hand side of equation (2) is neglected. 

Omitting these terms in (2) and taking the curl of the resulting linear equation to 
eliminate the pressure we obtain 

00 

m = - I; d , ~ y i  -,.q~;-~(~) + A  (12) 
n= 1 
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W 

02'4' = - Rn+'Fn(~), 
n= 1 

5 

( 1 3 )  

where A is a constant, Pn(p) is the Legendre polynomial of first degree and order n, 

and 

In  deriving equations ( 1 2 )  and (13) we have used equation ( 3 )  and the series rep- 
resentations for j and B, mentioned a t  the beginning of § 3.  The solution of ( 1 3 )  
subject to the conditions on '4' in the set of boundary conditions (5) to (8) is precisely 
that found by Andrews & Craine (1978) and requires no further discussion. 

The boundary condition ( 5 )  suggests that we seek a solution for w, and hence r, 
which is even in p. In  view of the form of the operator D it is therefore appropriate 
to express the right-hand side of equation (12 ) ,  which contains Legendre polynomials 
of both odd and even orders, as an even function ofp. We therefore write 

and deduce that (MacRobert 1947) 

where use has been made of the fact that the P6,,,(p) form an orthogonal set of func- 
tions with respect to the weighting factor ( 1  -p2) .  

Using the relation (16) the solution of ( 1 2 )  which satisfies the conditions ( 5 c )  and 
(8) is 

W W 

r = ( 1  -P2)  n= x 1 (~2n-132nP;n- l ( tc )  -dn~n+2 m=O x A E + ~  G ~ + ~ o L ) )  3 (18 )  

where 
A%+, = d n a ~ + , / { ( n + l ) ( n + 2 ) - ( 2 m + 1 ) ( 2 m + 2 ) } .  (19) 

Note both the numerator and denominator on the right-hand side of equation (19 )  
are zero when n = Zm, but in this special case a series expansion of the form ( 1 6 )  is 
unnecessary and we define AizIl = 0. The remaining boundary condition (6c) deter- 
mines P2n-1 and hence the non-dimensional azimuthal velocity W is given by 

Table 1 lists the coefficients A!&+, for particular current distributions of interest. 
The resultant flow of fluid in the hemispherical pool is a superposition of the azi- 

muthal motion represented by (20) and the poloidal motion which follows from the 
stream function Y given by Andrews & Craine 1978, equation (23). 
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b/a = 1 b/a = 5 
A r A \7 

m n = l  n = 2  n = 3  n = 4  n = 5  n = l  n = 2  n = 3  n = 4  

0 0 0 7-81 0 -0.48 0 -12.39 3-91 0 
1 0 0 6.84 0 0.86 0 0 3.42 -1.73 
2 0 0 1.07 0 1.34 0 0 0.54 0 
3 0 0 -0-12 0 0.27 0 0 -0.06 0 
4 0 0 0.03 0 -0.04 0 0 0.02 0 
6 0  0 -0.004 0 0.0016 0 0 0.0001 0 

TABLE 1. Coefficients 10BA$A+, for two current distributions. 

n = 6  

- 0.24 
0.43 
0.63 
0.14 

- 0.02 
0-006 

0.8 - 

FIUURE 1. Flow patterns for analytic solution using sourc-sink current distribution 
with b /a  = 5. Profiles of (a) ijj  x los and (b) Y x lo6. 

4.2. Results 
Numerical results for the solutions W and Y discussed above are now presented. 
Since W is independent of q5 it is displayed by showing lines of constant W on any 
axial section. The profiles of W and Y when ro /a  = 0.5 and b = 5a are shown in figure 
1, the arrows on figure 1 ( b )  indicating the direction of flow. Observe from figure 1 (a )  
that the maximum azimuthal velocity occurs on the free surface. The expressions for 
W and Y have also been evaluated for a number of values of b/a, all greater than 1, 
and some profiles for Y may be found in Andrews & Craine (1978). The corresponding 
profiles for W are not given here since they exhibit the same qualitative features as 
figure l ( a )  except that the azimuthal velocity can have its maximum value in the 
bulk of the fluid. 

The analytic solution is valid only for values of the applied current and applied 
magnetic field less than certain critical values. Inserting values of the parameters 
appropriate for the welding of steel, i.e. p = 8 x lo3, Y = ro = 2 x (m.k.s. 
units), careful investigation of the inertial terms reveals that their neglect is justified 
provided the applied current I is not more than 15A and the applied magnetic field 
B, satisfies lBo < 1-5 x lo4. To model real welding situations, however, solutions for 
much larger I are required and these solutions can only be obtained using numerical 
schemes such as the one outlined below. 
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5. Numerical solution of the nonlinear problem 
In  this section we present a numerical solution of the time-dependent Navier- 

Stokes equations using the stream-function-vorticity approach. Although it seems an 
unnecessary complication to determine the solution of a steady-state elliptic problem 
by considering the time-dependent parabolic one, the solution of the latter from pre- 
scribed initial conditions using a step-by-step method is equivalent to the solution of 
the steady-state elliptic problem by an iterative technique. Discussions of the method 
used here, and other related ones, may be found in the survey articles of Roache 
(1972) and Orszag & Israeli (1 974). 

Let us denote the spherical polar components of v and to ( = V x v) by (u, v, to) 
and ( E , T ,  5 )  respectively, and their non-dimensional counterparts by (3, Z, W) and 
(g, 7,c). Introducing 

we define 
uo = ,uo 12/8n2pvro, to = IBo/4npvro, (21) 

3 = u/uo, Z = quo, E = k y c o ,  7 = 'I/&, c = roc/%, (22) 

and observe that the definitions (15a, c )  of W and Y are equivalent to 65 = w/rofo  and 
'F = $/rguo. Taking s = sin 6 it follows, with the use of equation (a), that 

The azimuthal component of equation (2) can be written in the non-dimensional form 

a 9  KI 1 4 7 4  - + - div (RsWZ) = - {divgrad (RsW) - 2div (W&)]+ (--- j x B .&I, (24) 
a7 4Rs Rs IBO 

where div and grad denote the divergence and gradient taken with respect to the 
co-ordinates (R, 8, #) and the quantities 8 , ~  and KI are defined by 

2, = (s,,u, 0), T = vt/rz, KI = ,uo 12/2n2v2p. (25) 

Taking the curl of equation (2), the q5 component of the resulting equation becomes 

where 
KB = B~r~/2v2p,u, .  

In  addition to the boundary conditions ( 5 )  to (8) we must satisfy 

on R = 1, (27) 
- i anr & = o  on , u = ~ ,  & = o  on p = ~ ,  c=--- Rs aR2 

(28) 
- 
w = O  on p=1. 

Conditions (27) follow directly from applying (5a, b ) ,  (6a)  and (7) to equation (23c), 
whereas condition (28) is obtained from considerations of the forcing term and 
symmetry. To complete the specification of the problem we assume that  the initial 
conditions are Y = = E = 0 at r = 0. 
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FIGURE 2. Flow patterns using source-sink current distribution with b/a  = 5. 
Profiles of (a) fij x 108, (a) Y x lo6 and (c )  Y x lo6 for B, zeroI 

The numerical solution is obtained by solving the finite difference analogues of 
equations (23c), (24) and (26) subject to the boundary conditions (5) to (8) ,  (27) and 
(28). The Dufort-Frankel leap-frog method (Dufort & Frankel 1953) is used in 
obtaining the finite-difference form of the viscous terms in equations (24) and (26) 
and W and at a particular time step are then calculated from the finite-difference 
analogues of these equations. The updated values of the non-dimensional stream 
function Y are determined from equation (23c) using the iterative technique of 
successive over-relaxation. In  finding Z, < and Y the computational time is decreased 
by introducing a staggered mesh system. The calculation of W, and Y is repeated 
for successive time steps until the solutions converge. The numerical scheme is stable 
provided the time step satisfies the Courant-Friedrichs-Lewy conditions. 

The details of the numerical scheme are given in Weatherill (1980) whilst related 
discussions may be found in Roache (1972), Weir (1976) and Atthey (1978). 

6. Results using numerical method 
Before using the numerical scheme outlined in $ 5  to solve the full nonlinear problem 

the accuracy of the programme was tested for two special cases. Firstly, when both the 
applied current and applied magnetic field are small the numerical method should 
give identical results to the analytic solution derived in $ 4 .  This correlation was con- 
firmed for a variety of values of b/a( > 1) and for a number of values of Kz( < 1.8 x lo3) 
and KB( < 2 x On a 15 x 15 mesh, for all cases considered, the numerical solution 
of section 5 differs from the analytic solution obtained in 5 4.1 by a maximum of 1 %. 

A second test is possible when the applied field B, is zero but Kz > 1.8 x lo3. In  
this situation the numerical scheme gives results, on a 1 5 x  15 mesh, which agree 
with those obtained by Atthey (1978) to within 0.01 yo. 

With the above tests completed we now use our numerical scheme to obtain results 
for larger K1 and KB. A 15 x 15 mesh was used for all the numerical solutions which 
we discuss. A number of results were obtained on a finer mesh but the solutions were 
extremely close to those found on the 15 x 15 mesh. 

First we restrict attention to the source-sink model of the current source. Assuming 
r,/a = 0.5 and b = 5a, and choosing KI = 2 x 106 and K B  = 5 x lo3 (equivalent under 
normal welding conditions to an applied current of 500A and an applied magnetic 
field of 5 x 10-3T) the profiles of iij and Y obtained from the numerical solution are 
shown in figures 2(a, b )  respectively. With no applied magnetic field but the same 
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FIGURE 3. Flow patterns using numericdly constructed distribution. Profiles of 
(a) 2 x 102, (a) Y x lo3 and ( c )  Y x lo3 for B, zero. 

applied current, KI is unchanged, K B  = 0, the azimuthal velocity G is identically 
zero and the solutions for Y is shown in figure 2 (c ) .  Figure 2 ( b )  reveals a poloidal flow 
in which the fluid flows radially outwards on the top surface, in contrast to the flow 
withwt an applied field displayed in figure (2 c )  where the flow is radially inwards on 
this surface. We observe from figure (2u) that W is a maximum on the upper surface. 
Results have also been obtained for different values of b/u. When b/u = 1 and a 
magnetic field is applied the figure for Y! shows counter-rotating loops in the r, 8 plane. 
As b/a increases from 1, the upper loop decreases in size until it disappears completely 
before b/a reaches the value 5.  When b/a > 5 the flow patterns change little from those 
shown in figure 2. 

Secondly, and perhaps more importantly, we consider the numerical results obtained 
when the applied current source is the realistic one proposed by Atthey (1978) and 
discussed in Q 3. Using this numerical current distribution in the forcing terms in 
equations (24) and (26) and taking KI = 2 x lo4 and K B  = 5 x lo3 (with typical 
welding parameters this .is equivalent to assuming an applied current of 50A and 
an applied magnetic field of 5 x ' ~ O - ~  T) the results are displayed in figures 3 (a, b ) .  
Figure 3 ( c )  shows the results with zero applied field. Results obtained for different 
thicknesses of plate indicate similar flow patterns. 

The most important feature of the above results is the reversal in the direction of 
flow of fluid in the r, t9 plane, caused by application of the uniform magnetic field, 
and we now seek to explain this phenomenon. 

When equation (3), the Navier-Stokes equation with an electromagnetic forcing 
term j x B, is written in terms of spherical polar co-ordinates inspection of the resulting 
radial and angular (0) equations reveals that the only non-zero terms involving the 
azimuthal velocity w represent a centrifugal force w2/r  sin 8 per unit mass acting in a 
direction perpendicular to the axis (radially outwards if cylindrical co-ordinates were 
adopted). In  most situations of practical interest the numerical results show that w 
is much larger than both u and v, and therefore the motion in the r,  8 plane is governed 
by the relative magnitudes of the centrifugal force and the r and 8 components of the 
electromagnetic forcing term. A qualitative explanation for the flow patterns in 
figures 2 (b)  and 3 (b)  is now possible. 

As first noted by Shercliff (1970) the current component normal to the axis ,u = 0 
provides the forcing term which drives motion in the r ,  8 plane and in our problem 
it is the same current component which drives the azimuthal motion or swirl. For the 
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current distributions leading to figures 2 and 3 the component normal to the axis has 
its maximum value on the free surface and so it is not surprising that in these cases 
the non-dimensional W, and hence w, achieves its maximum value on this surface. 
Consequently there is a large centrifugal force acting radially outwards along p = 0 
and it is straightforward to show that the ratios of this force to the r and 0 components 
of j x B are large in the situations leading to figures 2 and 3. The centrifugal force 
therefore overcomes the electromagnetic force, which is trying to move the fluid on 
the top surface radially inwards, and the resulting motion is radially outwards on 
p = 0. 

With the velocity components determined the streamlines can be calculated by 
numerical integration of the usual equation. Without solving this equation it is easy 
to see that the streamlines will look similar to coiled springs, although their exact shape 
will depend on the relative magnitudes of u, v and w. It follows from (25c) and the 
definition of K B  that (KB/KI)s indicates the ratio of the applied magnetic field to the 
self-field and hence the ratio of the toroidal body force to the poloidal one. Taking 
the source-sink model with b = 5a, ro = 2 x I = lOA and B, = lO-ST we find 
that (KB/KI)* = 5 x and in this case u and v are much greater than w. However, 
in the situations leading to figures 2 and 3, which reflect typical welding conditions 
the quantity (KB/Kz)4 is 0.1 and 1 respectively and the value of w is much greater 
than that of either u or v. 

7. Discussion 
Most of the results presented in 5 6 apply to normal welding conditions and it is 

therefore of vital importance to ascertain whether our results are confirmed by 
experimental evidence. Inserting values for the parameters appropriate to the welding 
of steel our numerical results predict maximum azimuthal velocities of between 10 
and 20cms-l. The latter are of comparable magnitude to those obtained in the 
experiments of Willgoss (1978). Since the velocity components u and v are an order of 
magnitude less than w it j s  difficult to observe experimentally whether the fluid moves 
inwards or outwards on the free surface. 

There is indirect experimental evidence, however, to support our flow patterns. 
With typical welding parameters we find that the PBclet numbers associated with our 
flows are of order 10 and so it is natural to expect that convection within the weldpool 
will significantly alter the position of the liquid-solid boundary. With an applied 
magnetic field the fluid flow under realistic welding conditions is radially outwards 
on the free surface (figure 3b)  and therefore we anticipate that the width to depth 
ratio of the weldpool is greater than two. Experiments conducted by Willgoss (1978) 
confirm that this is the case. 

An important restriction on the validity of our solutions concerns the free surface. 
In  all the results derived earlier this surface has been assumed flat although in general 
this assumption is not valid. In  the linear flow rBgime the analytic solution derived in 
8 4.1 can be used to determine the surface’s approximate deformation (see Sozou & 
Pickering 1976, 1978). Slightly modifying their method and inserting appropriate 
values for the parameters it is found that the maximum deformation is extremely 
small compared with the depth of the pool. For further details the reader should 
consult Weatherill (1980). 
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A detailed calculation of the depression for the full nonlinear problem, which must 
be accomplished by a numerical routine, is a major task (see Roache 1972, p. 180) 
and any values so obtained would only be approximate since the fluid flow changes 
instantaneously with the free surface. Finding the exact shape of this surface is there- 
fore an extremely complicated coupled problem. However, an order of magnitude 
analysis (based on the method of Sozou & Pickering 1976, 1978) is possible and 
Weatherill (1980) has shown that, under conditions appropriate to figures 2 and 3, 
the free surface may be distorted by an amount which is approximately 10 yo of the 
radius of the pool. 

Another crucial assumption in our analysis is the neglect of back E.M.F. effects. 
It is not difficult to deduce that the maximum value of the Hartmann number M 
which is defined by M = 2KB,u,vcr, the electrical conductivity cr being typically 
8 x lo6 in a weldpool, for the situations appropriate to figures 1 to 3 is 0.05 and hence 
the neglect of the 5v x B term in equa.tion (1 1) is justified. Moreover, a careful investi- 
gation of the magnitudes of the relevant terms reveals that the a,zimuthal eddy 
currents generated when the poloidal motion crosses the applied magnetic field lines 
do not result in a forcing term which significantly affects the poloidal motion. 

The authors are indebted to the referees for some helpful comments, to Dr D. R. 
Atthey and Dr R. A. Willgoss for making available copies of their papers prior to 
publication and NPW is grateful to the Science Research Council and Marchwood 
Engineering Laboratories, CEGB for the award of a CASE studentship. 
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